Ο Ο **JAM 20** 6 MATHEMATICS **TEST PAPER**

NOTATIONS USED

 \mathbb{I} : The set of all real numbers

Z: The set of all integers

IMPORTANT NOTE FOR CANDIDATES

Objective Part:

Attempt ALL the objective questions (Questions 1-15). Each of these questions carries <u>six</u> marks. Each incorrect answer carries <u>minus two</u>. Write the answers to the objective questions in the <u>Answer Table for Objective Questions</u> provided on page 7 only.

Subjective Part:

Attempt ALL subjective questions (Questions 16-29). Each of these questions carries <u>fifteen</u> marks.

1.	$\lim_{n\to\infty} \frac{1}{2}$	$\frac{2^{n+1}+3^{n+1}}{2^n+3^n}$	- equals
	(Δ)	3	

- (A) 3 (B) 2
- (D) 2 (C) 1
- (D) (D) = 0
- (D) 0

2. Let
$$f(x) = (x-2)^{17}(x+5)^{24}$$
. Then

- (A) f does not have a critical point at 2
- (B) f has a minimum at 2
- (C) f has a maximum at 2
- (D) f has neither a minimum nor a maximum at 2
- 3. Let $f(x, y) = x^5 y^2 \tan^{-1} \left(\frac{y}{x} \right)$. Then $x \frac{\partial f}{\partial x} + y \frac{\partial f}{\partial y}$ equals
 - (A) 2f
 - (B) 3*f*
 - (C) 5f

(D)
$$7f \quad \checkmark$$

4. Let G be the set of all irrational numbers. The interior and the closure of G are denoted by G^0 and \overline{G} , respectively. Then

5. Let $f(x) = \int_{\sin x}^{\cos x} e^{-t^2} dt$. Then $f'(\pi/4)$ equals (A) $\sqrt{1/e}$ (B) $-\sqrt{2/e}$ (C) $\sqrt{2/e}$ (D) $-\sqrt{1/e}$

6. Let C be the circle $x^2 + y^2 = 1$ taken in the anti-clockwise sense. Then the value of the integral

$$\int_C \left[\left(2xy^3 + y \right) dx + \left(3x^2y^2 + 2x \right) dy \right]$$

equals

- (A) 1
- (B) $\pi/2$
- (C) *π*
- (D) 0

7. Let r be the distance of a point P(x, y, z) from the origin \bigcirc then ∇r is a vector

 \bigcirc

- (A) orthogonal to OP
- (B) normal to the level surface of r at P
- (C) normal to the surface of revolution generated by OP about x-axis
- (D) normal to the surface of revolution generated by OP about y-axis
- 8. Let $T: \mathbb{I}^3 \to \mathbb{I}^3$ be defined by $T(x_1, x_2, x_3) = (x_1 - x_2, x_1 - x_2, 0)$.

If N(T) and R(T) denote the null space and the range space of T respectively, then

- (A) $\dim N(T) = 2/$
- (B) dim R(T) = 2
- (C) R(T) = N(A)
- (D) $N(T) \subset R(T)$

surface is

((

1/3

9. Let S be a closed surface for which $\iint_{S} \vec{r} \cdot \hat{n} d\sigma = 1$. Then the volume enclosed by the

10. If $(c_1 + c_2 \ln x)/x$ is the general solution of the differential equation

$$x^{2} \frac{d^{2} y}{dx^{2}} + kx \frac{dy}{dx} + y = 0, \quad x > 0,$$

then k equals

- (A) 3
- (B) -3
- (C) 2
- (D) -1

11. If A and B are 3×3 real matrices such that rank(AB)=1, then rank(BA) cannot be

- (A) 0
- (B) 1
- (C) 2
- (D) 3

12. The differential equation representing the family of circles touching y-axis at the origin is

- (A) linear and of first order
- (B) linear and of second order
- (C) nonlinear and of first order
- (D) nonlinear and of second order

13. Let G be a group of order 7 and ϕ (a) = x^4 , $x \in G$. Then ϕ is

- (A) not one one \bigwedge
- (B) not onto
- (C) not a homomorphism
- (D) one one, onto and a homomorphism
- 14. Let R be the fing of all 2 R matrices with integer entries. Which of the following subsets of R is an integral domain?

15. Let $f_n(x) = n \sin^{2n+1} x \cos x$. Then the value of

$$\lim_{n \to \infty} \int_{0}^{\pi/2} f_n(x) dx - \int_{0}^{\pi/2} \left(\lim_{n \to \infty} f_n(x) \right) dx$$

is
(A) 1/2
(B) 0
(C) -1/2
(D) - ∞
16. (a) Test the convergence of the series

$$\sum_{n=1}^{\infty} \frac{n^n}{n! \, 3^n}$$

(b) Show that

$$\ln(1+\cos x) \le \ln 2 - \frac{x^2}{4}$$

for $0 \le x \le \pi/2$.

17. Find the critical points of the function

$$f(x, y) = x^3 + y^2 - 12x - 6y + 40.$$

Test each of these for maximum and minimum. (15)

- 18. (a) Evaluate $\iint_{R} xe^{y^2} dx dy$, where *R* is the region bounded by the lines x = 0, y = 1 and the parabola $y = x^2$. (6)
 - (b) Find the volume of the solid bounded above by the surface $z = 1 x^2 y^2$ and below by the plane z = 0. (9)

19. Evaluate the surface integral
$$\iint x(12y - \sqrt{y^4} + z^2) d\sigma$$

where the surface S is represented in the form $z = y^2$, $0 \le x \le 1$, $0 \le y \le 1$. (15)

20. Using the change of variables, evaluate
$$\iint_R xy \, dx \, dy$$
, where the region *R* is bounded by the

curves
$$xy = 1$$
, $xy = 3$, $y = 3x$ and $y = 5x$ in the first quadrant. (15)

21. (a) Let u and v be the eigenvectors of A corresponding to the eigenvalues 1 and 3 respectively. Prove that u + v is not an eigenvector of A. (6)

(b) Let A and B be real matrices such that the sum of each row of A is 1 and the sum of each row of B is 2. Then show that 2 is an eigenvalue of AB. (9)

(6)

(9)

- 22. Suppose W_1 and W_2 are subspaces of $\overset{*}{=}$ ⁴ spanned by $\{(1,2,3,4), (2,1,1,2)\}$ and $\{(1,0,1,0), (3,0,1,0)\}$ respectively. Find a basis of $W_1 \cap W_2$. Also find a basis of $W_1 + W_2$ containing $\{(1,0,1,0), (3,0,1,0)\}$.
- 23. Determine y_0 such that the solution of the differential equation

 $y' - y = 1 - e^{-x}, y(0) = y_0$

has a finite limit as $x \to \infty$.

24. Let $\phi(x, y, z) = e^x \sin y$. Evaluate the surface integral $\iint_S \frac{\partial \phi}{\partial n} d\sigma$, where S is the surface

of the cube $0 \le x \le 1$, $0 \le y \le 1$, $0 \le z \le 1$ and $\frac{\partial \phi}{\partial n}$ is the directional derivative of ϕ in the direction of the unit outward normal to *S*. Verify the divergence theorem. (15)

25. Let y = f(x) be a twice continuously differentiable function on $(0, \infty)$ satisfying

$$f(1) = 1$$
 and $f'(x) = \frac{1}{2}f(\frac{1}{x}), x > 0.$

Form the second order differential equation satisfied by $y \neq f(x)$, and obtain its solution satisfying the given conditions. (15)

- 26. Let $G = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathbb{Z} \right\}$ be the group under matrix addition and H be the subgroup of G consisting of matrices with even entries. Find the order of the quotient group G/H. (15)
- 27. Let

$$f(x) = \begin{cases} x^2 & 0 \le x \le 1 \\ \sqrt{x} & 0 \le x > 1. \end{cases}$$

Show that
$$f$$
 is uniformly continuous on $[0, \infty)$. (15)

28. Find $M_n = \max \left\{ \begin{array}{c} x \\ x \geq 0 \end{array} \right\}$, and hence prove that the series $x \geq 0$ $n(1+nx^3)$, and hence prove that the series n = 1 $n(1+rx^3)$ is uniformly convergent on $[0, \infty)$.

29. Let R be the ring of polynomials with real coefficients under polynomial addition and polynomial multiplication. Suppose $I = \{ p \in R : \text{ sum of the coefficients of } p \text{ is zero} \}.$ Prove that I is a maximal ideal of R. (15)

(15)

(1))