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Risk Sensitive Estimators for Inaccurately
Modelled Systems

Shovan Bhaumik', Smita Sadhu and Tapan Kumar Ghoshal

Abstract - Robustness of risk sensitive (RSE) estimators/filters
for inaccurately modelled plant are elucidated and exemplified.
A theorem which allows alternative pathway for deriving RSE
filter relation and derivation of different closed form relations
for RS filters in linear Gaussian cases is provided. Consequently,
errors in expressions in earlier publications have been detected
and rectified. Properties of RS filters are briefly reviewed and
the interpretation of robustness of RS filters elaborated. Using
Monte Carlo simulation, it is shown that RS filters perform
significantly better compared to risk-neutral filters when (i)
process noise covariance is in error (ii) the true system (truth
model) contains unmodelled bias (iii) the state transition matrix
is inaccurately known. Design pragmatics for the choice of the
risk sensitive parameter is indicated.

Keywords - Kalman filter, Model uncertainty. Risk sensitive
filter, Robust Estimation

I. INTRODUCTION

fter nearly a decade, interest in Risk sensitive estimators

has been resurrected in [1], which has used a more gen-

eral framework compared to the earlier publica-
tions[3,5,7,8] which have their origin in Risk Sensitive
Control. The concept of Risk sensitive estimators (RSE) is ap-
plicable to linear as well as nonlinear problems with an expo-
nential cost criterion, with a mean square kernel or with a
more general convex forms [ 1] kernel. The RSE is expected to
have enhanced robustness and is closely linked with H,, type
of robust estimators [1].

While the properties and motivations for Risk Sensitive
Control law are fairly well known, despite a number of wor-
thy publications up to 2002, the same cannot be said about
Risk Sensitive Estimators. From the dearth of publication
(with the notable exception of [6]) it may arguably be said that
the properties of RSE are not appreciated to the extent of ex-
tracting design pragmatics for practical problems. Objective
of the present paper is to attempt a mitigation of the above
shortcoming.

This paper extends the work done in [4] to provide an intu-
itive appreciation of the properties of RSE’s. The dimensions
of robustness of RSE’s have been discussed and extended. In
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particular, performance of RSE’s in presence of unknown
bias and inaccurate knowledge of process noise covariance
has been elaborated. These aspects had not been reported ear-
lier.

Generalised numerical methods for non linear and non
Gaussian cases had not been available so far (exceptions be-
ing recent contributions [11,12,13]). Accordingly, examples
using Linear Gaussian problems have been presented to illus-
trate the properties- so that the results can be claimed to be
generally reproducible.

Available literature in RSE’s tend to use different conven-
tions and symbols which could be confusing to a beginner. To
add to the problem, printers’ devil abounds in some important
publications [1, 9]. Using the conventions of [1], we state a
more general, two parameter framework for formulating the
RSE estimation problem. We also state a necessary theorem
with which recursive solution of general (including non linear
and non Gaussian signal models) RSE may be deduced. Using
this theorem, the expressions provided in [1] for Linear
Gaussian signal model have been corrected and several other
closed forms for RSE’s have been derived.

I1. FORMULATION OF RISK SENSITIVE
ESTIMATION PROBLEM

The following general (nonlinear) signal model (additive
noise) consisting of the state and measurement equation is
considered:

X = f(x)+w, )

Vi =h(x)+v, Q)

Dimensionally, w, € R",v, € R”,x, € R" and y, eR’
of which x; denotes the state of the system and yy is the mea-
surement at the instance k where k ={0,1,2,3...n}. The vector
f(x,) and h(x,) are general nonlinear function of x, and k. We
assume that f(x,) is nominally and h(x) is absolutely known.
The variables wy, v are the process and measurement noise,
respectively, which are random quantities with only sufficient
statistics known. The initial state x; is another random vari-
able, with known distribution and probability density. It is as-
sumed that the process and measurement noise and the
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random variable signifying initial values of the variable are
uncorrelated to each other.

A two parameter, risk sensitive squared error kernel type
cost function at the time instance k may be defined as:

k-1

Jrs(G,k) = E[exp(l"qzo(xi _‘ii)T(xi — %)+ 1, (%, _Q)T(xk )]

where ;’s are the optimum estimated values of state variable

for past steps i€ {0,1,2,3...k-1}. The current optimum esti-

mate i is obtained by finding the optimum value of &, which

minimises J*%(¢ k). The constant parameters p; and p, are
called risk sensitive parameters.

The risk sensitive cost function as above, includes an accu-
mulated error cost up to time k, with a relative weight p; and
the current cost of squared estimation error is weighted by p,.
The weighting factors, i.e. the risk sensitive parameters can be
normalised by replacing g, by unity and replacing p; by the
ratio 6=/, , (as done in almost all previous publications ex-
cept [1]) without affecting the optimal estimate. The present
workers however advocate the use of both the parameters as it
allows changing the absolute as well as the ratio. Further,
from numerical considerations also, a choice of ‘small’ values
for risk sensitive parameters often avoids numerical overflow
and inaccuracies.

II1. RECURSIVE SOLUTION OF THE RSE

The recursive solution of RSE is realized generally in a
two-step process. First, a recursive relation of an information
state [5] is formulated, which can be updated in each time
step. In each time step, the optimal estimate is then obtained
by extremizing the cost of another function involving the in-
formation state.

We propose [11,13], an inductive method for deriving the
expression for the information state. The induction gives a di-
rect and intuitive derivation, without the use of Measure
change and Girsanov’s theorem [2,3]. We omit the details of
the induction process (proof) for space constarints and simply
state the result as Theorem-1 below.

Theorem 1
The solution of the RSE problem may be obtained from the
following recursive relations:
£k+1\k+l =arg min I exp[“z (xk+1 —< )T (xk+1 -6 ):kx'k+ldxk
¢ = G)

Where, o, =PV | %)

x jexp[lvh (% = Xp )T (%pss = Xpa o, P(3x | X ),
o C))

Notes (1) The recursive relation needs to be initialised for
the information state. (2) The estimation equation is specifi-
cally applicable for posterior estimation where the estimation
is performed after receiving the measurement. Similar rela-
tions can be obtained for prior estimates (also known as de-
layed measurement [4]), as used in [1]. (3) The relations,
expressed in Theorem-1 are different from those obtained by
[3,5]. Compared to [3], the expressions herein may be shown
to be more numerically efficient in recursive update of infor-
mation state and finding the optimal estimate. (4) The integra-
tions, may not, in general be performed for non-linear or non
Gaussian case.

IV. LINEAR GAUSSIAN SIGNAL MODEL

For the simplified case, closed form recursive, Kalman Fil-
ter like forms are possible. We call such filters as Risk sensi-
tive Kalman Filter (RSKF) forms. The RSKF expressions can
be obtained by using Theorem-1 as the Gaussian forms are
integrable. The multiplicity of forms in earlier literature
[1,3,9,5] arises because one may choose (a) the posterior or
prior estimation expressions and derive them using (b) poste-
rior or prior covariance intermediates to obtain the estimates.
Thus there are, at least, four possible forms. Other subtle dif-
ferences like using information filter (inverse of covariances)
[5] are also possible.

The outline for deriving the relations for linear Gaussian
case is as follows:

The linear Gaussian signal model is described as:

Xy =Fx, +w, w,~N(0,0)

¥y, =Hx,+v,, v, ~N(O,R) From this,

Pen | %n) =Ny —Hxp 1, R), plx,, | %)= N(x,,, — Fx,, Q)

All the items in equations (3) and (4) being Gaussian, and
noting that the argmin operation for Gaussian expression is
the mean, the equations can be evaluated in a straight forward,
even if tedious process.

The RSKF expressions for posterior to posterior state update
and prior to prior covariance update, as worked out and used
in the present work are given by:

£k+1\k+1 =F%, +(H "RH + Z;}ruk )!
x H' R (y,, — HF: Tex) ®)

Zk+l\k =0+ F(Z;‘lk_l +H"R'H-2u,)'F" (6)

It may be noted that for risk neutral case p1=0 and the for-
mulae for state estimation and error covariance update reduce
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to standard Kalman filter formulae. Further, the expressions
do not contain p,

Corresponding expressions in [1] with prior to prior state
update have been obtained only for unity variance process
noise and measurement noise and that too have printing er-
rors. It may be shown that for the more general case, the
covariance update equation remains the same as above and
the correct formulae for state update is :

£k+1\k =F(H'R'H + Z;}ruk 21 ) 7

T a4 a n
X(H" Yeo + 2o B — ZWiF 1)

V. ROBUSTNESS PROPERTIES AND APPLICATION
PRAGMATICS OF RSE

Essential general properties of RSE have been well com-
piled in [4]. We concentrate only on two distinct but intercon-
nected aspects of the properties, namely, robustness and the
pragmatics for choosing risk sensitive parameters. We draw
upon the already known properties, examine and reinterpret
them as also attempt to extend them. It is near impossible to
comment on properties for non-linear and non Gaussian sig-
nal models. However, in the tradition of the predecessors, we
use the properties of Linear Gaussian problems to gain insight
and conjecture that some of the properties would also be ap-
plicable to ‘mildly’ non-linear non-Gaussian cases. The ex-
tended KF like linearisation, used in [6] also indicate that
some properties in linear cases may be extended to non-linear
cases.

A. Robustness Properties

The connection between H, filter and the RSE is well
known [1]. In H,, filter the objective is to minimize the cost
(Jaw) such that Jg<y”. In case of Kalman filter y—>c0. Where
as in case of RSE the risk sensitive parameter functions as
is propoortional to 1/ as stated in [1], with say , p,=1 .

This is the primary reason why the RSE is considered to be
robust. However, the different aspects of the robustness,
namely, with respect to the presence of un-modelled bias, er-
ror/inaccuracy in state matrix and the same for process
would be carefully examined. Also of importance is to find
the temporal aspects that is how long does it take for the RSE
to recognise the modelling error and to compensate for them.
The properties are enumerated as given below:

(i) Astherisk sensitive cost function memorises the past er-
rors incurred by the estimator, intuitively it is expected
that the RSE would learn from past mistakes and per-
form better. At the same time, learning requires time and
the effect of learning can only be seen over time and not
instantaneously. One may therefore expect that the per-
formance of RSE to improve over time.

(ii) The above also means that RSE would be more effective
against sustained perturbations rather than quickly vary-
ing disturbances in the model. Thus, in the presence of
an un-modelled bias, the RSE is expected to track with
lesser errors than a risk-neutral filter. That it is indeed
so, is exemplified in the next section. As a corollary, one
would not expect the RSE to effectively reject un-mod-
elled, quickly varying, disturbances.

(iii)It should be pointed out that the RS cost function assigns
cost for each point in state space and therefore penalizes
the regions in state space, which, in the past , more often
resulted in large error covariances.

(iv)The RS cost function computes the cost associated with
points in state space based on its knowledge of the nomi-
nal model and also on the particular realization of the
measurement sequence. As such, RS cost function can-
not directly infer perturbations and changes in the signal
model, it has to depend on measurement. For a signal
model with lower measurement noise (covariance), the
RSE is expected to perform better.

(v) Inspection of equation (5) (as also equation (7) ) reveals
that the effect of increasing tantamount to increasing the
process noise covariance as well as the estimation error
covariance. This enhances confidence in measurement
and reduces the same in the assumed dynamics of the
process- leading to higher feed back gain of the estima-
tor- effectively increasing the filtering bandwidth.

(vi)In practical application of KF, it is customary to use a
larger value of process noise covariance (Q) than the
nominal to avoid the performance penalty if the true Q is
larger than the nominal or to take care of modelling er-
rors in plant dynamics. The above property shows why
such artificial measures are unnecessary for RSKF as
the risk sensitive parameter automatically does that.
Further, increase in Q, generally makes the estimators
faster, however, RS estimators, in general, takes a lon-
ger time to settle. The effect of increasing Q and increas-
ing the risk factor, therefore does not have one to one
correspondence.

B. Pragmatics Related to RS Parameters

From the discussion of previous paragraphs it may be easily
inferred that enhancing the value of u; increases robustness
and bandwidth of the filter and therefore is desirable. How-
ever, there are limits beyond which one cannot increase the
risk sensitive parameter.

The estimation in risk sensitive cases is possible over a hori-
zon of length N 0<k<N where if and only if the following
conditions are satisfied: (P, —2uJ)>0 for 0Sk<N .
This is discussed in [1,4] and is also evident from inspecting
equation (5) and equation (7)

In general there is no guarantee beforehand that these condi-
tions will be satisfied for each step.
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Apart from the above, larger values of risk sensitive parame-
ters often gives rise to overflow or reduced accuracy. The
present workers found that the following simple heuristic is
useful to assign the first guess value for the risk sensitive pa-
rameter. This can be intuitively justified from the conver-
gence criteria as above.

wi<1/(2 ||P|| ) where ||P|| is the largest eigenvalue of P, taken
over all the values of k. The later can be estimated from a
knowledge of the physics of the problem or from a run of KF
or EKF.

VI. NUMERICAL EXPERIMENT AND ILLUSTRATION

A. System Models For Experiment

“Truth model” [14] of the system is taken as
X, = (F +AF)x, +bias+ Bw,
Where the filter model is X = Fxp + Bw,

The measurement model is ~ ¥x = Hx +,

Case: I: Single dimensional case

F=0.99,H=1 B=1 “Truth model” is initialised with the ran-
dom number generated from the normal distribution zero
mean and unity covariance.

Case II : Two-dimensional case:

In earlier publications [1], a rather contrived two dimen-
sional model had been chosen. The system had nearly de-
coupled state variables but with nearly identical eigenvalues-
which shows poor controllability and observability. We
choose a more plausible system as discussed in [10].

0 —0.3 -6
F=lThEE] H=[-100 10] w, ~ N(O,])
0 0
v, ~ N(0,]) AF = |81<0.3
0 5

“Truth model” is initialised with a random number gener-
ated from the zero mean and covariance [1 0 and filter
is initialised with zero values for the [0 25]
both states.

B. Sensitivity to state model error

The fig 1 and 2 are the root mean square error (RMSE) of the
state variables obtained from ordinary KF and risk sensitive
KF (RSKF) for 100 Monte Carlo run of case 1I with §=0.07
and p;=0.004. It should be noted from the figure that estima-
tion by RSKF is better compared to KF. It should also be
noted that RSKF estimation is much better than KF in the later
time steps compared to the first few time steps. This is as ex-
pected according to our previous discussion. It is seen from
the figures that even for such a small § the RMSE calculated

for the state variable from KF algorithm diverges but the
RSKEF does not.

The fig 3 illustrates the variation of the RMSE of first state
variable at 100th step for both KF and RSKF as the uncer-
tainty parameter & ranges in value from -2 to 2 for a fixed
value of p,=0.004 for case II. The graph shows that for very
low value of 8, the Kalman filter achieves a lower terminal
RMSE value than RSKF. For the larger value of & the RSKF
has the lower terminal RMSE value than KF. It is also seen
from the graph that in this particular case the variation with &
is not symmetric in the positive and negative regions. The na-
ture of variation of terminal RMSE with 4 of state 2 shows
similar trend and is not shown.

C. Sensitivity To Unmodeled Bias

If any unmodelled bias is present in the system, the integra-
tor like effect is observed on the true-value of the state vari-
able. The ordinary Kalman filter fails to track the true value of
the states whereas RS filter acts comparatively better. It is il-
lustrated in fig 4 using case I when AF is zero and bias is
taken as 0.2. The standard deviation of the process and the
measurement noise is 0.1 and 2.5 respectively. L;is taken as
0.085.

D. Sensitivity To Noise Modelling Error

From the closed form equation of the risk sensitive filter for
linear case it is clear that incorporating the risk sensitive pa-
rameter increases the effective prior covariance of the filter.
So if the system is modelled wrongly by using a smaller pro-
cess noise covariance, the risk sensitive filter estimates better
than the risk neutral filter. For this experiment we have taken
the case I where filter process noise covariance and measure-
ment noise covariance are taken as 0.01 and unity respec-
tively whereas the true process noise covariance is taken as 4
times that of filter. The RMSE obtained from the RSKF with

w=0.3, and KF is shown in the fig 5.

VII. DISCUSSION AND CONCLUSION

Using a general theorem for recursive solution the Recur-
sive State estimation problem, RSKF relations have been ob-
tained and errors in previously published results have been
rectified. The known and often overlooked aspects of Robust-
ness properties of risk sensitive filters are discussed and their
implications brought out. Sensitivity of RSF to state model er-
ror, un-modelled bias and noise modelling errors are dis-
cussed with examples. The role of risk sensitive parameter
and the considerations for its choice are discussed. The contri-
bution is expected to encourage new application for this
estimator.
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Fig.1.RMSE of first state variable for KF and RSKF of case II
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Fig.2 RMSE of 2nd statc variable for KF and RSKF of case IT

RMSE of state 1

delta
Tarminsl value of RMSE
Fig.3. Terminal RMSE of 1" state variable for KF and RSKF for
different 5 of case I
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Fig 4. The true and estimated value of the state of case I with bias

VIII. ACKNOGWLEDGEMENT

The first author is grateful to the Aeronautical Research and
Decvelopment Board and Council of Scicntific & Industrial
Research (CSIR), India for supporting research.

(1]

[2]

(31

4]

[3]

[6]

(8]

19

[10]

12

1

RMSE
&

RMSE for Q mismatch
Fig.5. RMSE for RSKF and KF for Q mismatch of case |

REFERENCE

R.K Boel, M.R_James and L R_Petersen ''Robustness and risk sensitive
filtering™ IEEE Transaction on Automatic Control, vol 47, No 3, pp
451460, March 2002

Subhrakanti Dey and Charalambos D Charalambous " Diserele time
rigk sensitive filters with non gaussian initial conditions and their
ergodic propertics”™ Asian Journal of Control, vol. 3, ne.4, pp. 262-271,
December 2001

Subrakanti Dey and John B Moore “Risk sensitive fltering and
smoothing vis reference probability methods” IEEE Transaction on
Automatic Control, Vol 42, Ne 11, November 1997,

R.N.Banavar and I.L.Speyer * Propertics of rigk sensitive filters/esii-
mators” IEE Proceedings on Control, vol 145, no 1, January 1998
LB.Collings, Maithew R James and J B Moore “An information state
approach to linear /risk-sensitive/Quadratic/Gaussian Control” 33"
[EEE Conference on Decision and Control, Vol 4, pp 3802-3807, De-
ccmber 1994

M. Jayakumar and R. N. Banavar “Risk-sensitive Filters for Recursive
Estimation of Motion from Images”, Veol. 20, No. 6, pp. 659 - 666 , the
IEEE Trans. on Pattern Analysis and Machine Intelligence, June 1998,
I.B. Moorcy R.1. Ellioity S. Dey “Risk-sensitive Generalimtions of
Mininmm Variance Bstimation and Control”, Journal of Mathematical
Sysicms, Estimation and Control, Vol. 7, No. 1, pp. 1-15 1997,

James T. Lo and Thomas Wanner, “Existence and Uniqueness of
Risk-Sensitive Estimates” IEEE Transaction on Automatic Control,
Vol 47, No 11, pp 1945-1948, Feb 1991.

Jason L. Speyer, Chib-hai Fan, and Ravi N. Benavar “Optimal Stochas-
tic Estimation with Exponential Cost Criteria”, Proceedings of the 31
Conference on Decision and Control, December 1992,

Lihuva Xie, Yeng Chai Soh and Carles E. dc Sousm, “Robust Kalman
Filtering for Uncertain Discrete Time Systems,” IEBE Transaction on
Automatic Control, Vol 39, No 6, pp 1310-1314, June 1994.



IEEE Indicon 2005 Conference, Chennai, India, 11-13 Dec. 2005 91

[11] Shovan Bhaumik, Smita Sadhu, Tapan Kumar Ghoshal, “Recursive
Formulation and Properties of RSF”, CKBS report no
CKBSJU/TR/0705/2, Aug, 2005

[12] Smita Sadhu, A Doucet, “Particle Methods for Risk Sensitive Filter-
ing” December 2005, Communicated to INDICON 2005.

[13] Shovan Bhaumik, Smita Sadhu, Tapan Kumar Ghoshal, “Adaptive
Grid Solution of Risk Sensitive Estimator Problems”, Communicated
to INDICON 2005.

[14] Peter D. Hanlon, Peter S. Maybeck “Characterization of Kalman Filter
Residuals in the Presence of Mismodeling”, Proceedings of the 37th
IEEE Conference on Decision & Control, Tampa, Florida USA
December 1998



